Selasa, 20 Oktober 2015

AYO KAWAN BELAJAR SERU FISIKA DENGAN MUDAH  UBTUK MENUJU UN YAN SUKSES

Soal No. 1
Cermati gambar percobaan penyinaran suatu lempeng logam dengan cahaya berikut. Jika fungsi kerja logam adalah 2,2 eV dan cahaya yang disinarkan memiliki panjang gelombang λ dan frekuensi f tentukan:




a) energi cahaya minimal yang diperlukan agar elektron lepas dari logam
b) frekuensi cahaya minimal yang diperlukan agar elektron lepas dari logam
c) panjang gelombang maksimum yang diperbolehkan agar elektron lepas dari logam
Gunakan data berikut :
Cepat rambat cahaya c = 3 x 108 m/s
Tetapan Planck h = 6,6 x 10−34 Js
1 eV = 1,6 x 10−19 joule

Pembahasan
a) energi cahaya minimal yang diperlukan agar elektron lepas dari logam
energi cahaya minimal tidak lain adalah energi ambang atau fungsi kerja logam. Sehingga
Wo = 2,2 eV
Wo = 2,2 x (1,6 x 10−19 ) joule = 3,52 x 10−19 joule

b) frekuensi cahaya minimal yang diperlukan agar elektron lepas dari logam
Ingat energi foton atau cahaya adalah E = hf, E disini dilambangkan sebagai Wo sehingga
Wo = h fo
3,52 x 10−19 = 6,6 x 10−34 x fo
fo = 0,53 x 1015 joule

c) panjang gelombang maksimum yang diperbolehkan agar elektron lepas dari logam
Hubungkan dengan kecepatan cahaya
λmax = c / fo
λmax = 3 x 108 / 0,53 x 1015
λmax = 5,67 x 10−7 m

Soal No. 2
Cermati gambar percobaan penyinaran suatu lempeng logam dengan cahaya berikut:



Jika fungsi kerja logam adalah 2,1 eV dan cahaya yang disinarkan memiliki panjang gelombang 2500 Å dengan konstanta Planck 6,6 x 10−34 Js dan 1 eV = 1,6 x 10−19 joule, tentukan
a) energi ambang logam dalam satuan joule
b) frekuensi ambang
c) panjang gelombang maksimum yang diperlukan untuk melepas elektron dari logam
d) panjang gelombang dari cahaya yang disinarkan dalam meter
e) frekuensi dari cahaya yang disinarkan dalam Hz
f) energi foton cahaya yang disinarkan
g) energi kinetik dari elektron yang lepas dari logam

Pembahasan
Skemanya seperti ini



Logam yang di dalamnya terdapat elektron-elektron disinari oleh cahaya yang memiliki energi E. Jika energi cahaya ini cukup besar, maka energi ini akan dapat melepaskan elektron dari logam, dengan syarat, energi cahayanya lebih besar dari energi ambang bahan. Elektron yang lepas dari logam atau istilahnya fotoelektron akan bergerak dan memiliki energi kinetik sebesar Ek

Hubungan energi cahaya yang disinarkan E, energi ambang bahan Wo dan energi kinetik fotoelektron Ek adalah
E = Wo + Ek
atau
hf = hfo + Ek

a) energi ambang logam dalam satuan joule
Wo = 2,1 x (1,6 x 10−19 ) joule = 3,36 x 10−19 joule

b) frekuensi ambang
Wo = h fo
3,36 x 10−19 = 6,6 x 10−34 x fo
fo = 0,51 x 1015

c) panjang gelombang maksimum yang diperlukan untuk melepas elektron dari logam
λmax = c / fo
λmax = 3 x 108 / 0,51 x 1015
λmax = 5,88 x 10−7 m d) panjang gelombang dari cahaya yang disinarkan dalam meter
λ = 2500 Å = 2500 x 10−10 m = 2,5 x 10−7 m

e) frekuensi dari cahaya yang disinarkan dalam Hz
f = c/λ
f = 3 x 10 8/2,5 x 10−7
f = 1,2 x 10 15 Hz

f) energi cahaya yang disinarkan
E = hf
E = (6,6 x 10−34) x 1,2 x 10 15 = 7,92 x 10 −19 joule

g) energi kinetik dari elektron yang lepas dari logam
E = Wo + Ek 7,92 x 10 −19 = 3,36 x 10−19 + Ek
Ek = 7,92 x 10 −19 − 3,36 x 10−19 = 4,56 x 10−19 joule

Soal No. 3
Sebuah keping logam yang mempunyai energi ambang 2 ev disinari dengan cahaya monokromatis dengan panjang gelombang 6000 Å hingga elektron meninggalkan permukaan logam. Jika h = 6,6 × 10−34 Js dan kecepatan cahaya 3 × 108 m/detik, maka energi kinetik elektron yang lepas....
A. 0,1 × 10–19 joule
B. 0,16 × 10–19 joule
C. 1,6 × 10–19 joule
D. 3,2 × 10–19 joule
E. 19,8 × 10–19 joule
Sumber soal : Ebtanas tahun 1986


Pembahasan
Data dari soal:
Energi ambang Wo = 2 eV = 2 x (1,6 x 10−19 ) = 3,2 x 10−19joule
Panjang gelombang λ = 6000 Å = 6000 x 10−10 = 6 x 10−7 m

Menentukan energi kinetik foto elektron:



Soal No. 4
Permukaan katode disinari cahaya sampai pada frekuensi tertentu, ternyata tidak terjadi foto elektron. Agar permukaan katode memancarkan foto elektron, usaha yang dapat dilaksanakan adalah …
A. mengurangi tebal katode dan memperbesar intensitas cahaya
B. memperbesar panjang gelombang dan memperbesar intensitasnya
C. mengurangi tebal katode dan memperbesar panjang gelombang
D. memperbesar frekuensi cahaya sampai frekuensi batas dan memperbesar intensitasnya
E. memperbesar frekuensi cahaya sampai di atas frekuensi batas dan memperbesar intensitasnya
Sumber soal : Ebtanas 1987

Pembahasan
Foto elektron tidak terjadi berarti energi cahaya yang disinarkan masih dibawah energi ambang, untuk itu frekuensi cahaya harus diperbesar hingga menghasilkan energi yang melebihi energi ambang. Untuk memperbanyak jumlah foto elektron yang terjadi, maka intensitas cahaya harus dinaikkan.

Soal No. 5
Hubungan energi kinetik elektron dan frekuensi penyinaran pada gejala foto listrik terlihat pada grafik di bawah ini.



Apabila konstanta Planck h, besarnya fungsi kerja logam adalah …
A. 1 h
B. 2 h
C. 3 h
D. 4 h
E. 8 h
Sumber soal : Ebtanas 1989

Pembahasan
Dari gambar terlihat frekuensi ambang adalah 4 HZ, sehingga nilai fungsi kerja logam
Wo = hfo = h(4) = 4h

Soal No. 6
Cahaya dengan panjang gelombang 500 nm meradiasi permukaan logam yang fungsi kerjanya 1,86 × 10–19 joule. Energi kinetik maksimum foto elektron adalah …
A. 2 × 10–19 joule
B. 4 × 10–19 joule
C. 5 × 10–19 joule
D. 6 × 10–19 joule
E. 9 × 10–19 joule
Sumber soal : Ebtanas 1990

Pembahasan

Data dari soal sebagai berikut:
λ = 500 nm = 500 x 10–9 m = 5 x 10–7 m
Wo = 1,86 x 10–19
Ek = ....?


Soal No. 7
Frekuensi ambang suatu logam sebesar 8 × 1014 Hz, dan logam tersebut disinari dengan cahaya yang mempunyai frekuensi 1015 Hz. Jika tetapan Planck = 6,6 × 10–34 J s, maka energi kinetik foto elektron yang terlepas dari permukaan logam tersebut adalah …
A. 1,32 × 10–19 joule
B. 1,32 × 10–19 joule
C. 1,32 × 10–19 joule
D. 1,32 × 10–19joule
E. 1,32 × 10–19 joule
Sumber soal : Ebtanas 1991

Pembahasan
Data yang diberikan oleh soal:
frekuensi ambang fo = 8 × 1014 Hz
frekuensi cahaya f = 1015 = 10 × 1014 Hz
Ek = ...?



Soal No. 8
Frekuensi ambang natrium adalah 4,4 x 1014 Hz. Besar potensial penghenti dalam volt bagi natrium saat disinari dengan cahaya yang frekuensinya 6,0 x 1014 Hz adalah...
A. 0,34
B. 0,40
C. 0,44
D. 0,66
E. 0,99
Sumber soal : UMPTN 1999

Pembahasan
Data dari soal:
f = 6,0 x 1014 Hz
fo = 6,0 x 1014 Hz
Potensial penghenti = ...?
Ek = h(f−fo)
Ep = qV
dimana muatan elektron adalah 1,6 x 10−19 Coulomb






Soal No. 1
Sebuah elektron yang bermuatan 1,6 x 10−19 C bergerak dengan kecepatan 5 x 105 m/s melalui medan magnet sebesar 0,8 T seperti gambar berikut. Tentukan :
a) besar gaya magnetik saat elektron berada dalam medan magnet
b) arah gaya magnetik yang bekerja pada elektron



Pembahasan
a) besar gaya magnetik saat elektron berada dalam medan magnet
Gunakan persamaan
F = BQV sin θ
dimana B adalah besarnya medan magnetik (Tesla), Q adalah besarnya muatan (Coulomb), V adalah kecepatan gerak muatan (m/s) dan θ adalah sudut yang dibentuk antara arah gerak muatan dengan arah medan magnet. Pada soal diatas 90° sehingga nilai sinusnya adalah 1.
F = (0,8)(1,6 x 10−19)(5 x 105)(1) = 6,4 x 10−14 Newton

b) arah gaya magnetik yang bekerja pada elektron
Untuk menentukan arah gaya magnetik gunakan kaidah tangan kanan sebagai berikut:


4 jari = arah medan magnet
ibu jari = arah gerak muatan
telapak tangan = arah gaya magnetik → jika muatan berjenis positif
punggung tangan = arah gaya magnetik → jika muatan berjenis negatif
Jika diketahui dua kutub magnet maka arah medan magnet adalah dari kutub utara (U) menuju kutub selatan (S) dan karena elektron adalah muatan negatif, maka arah gaya yang bekerja sesuai arah punggung tangan yaitu keluar bidang baca.

Soal No. 2
Sebuah positron yang bermuatan 1,6 x 10−19 C bergerak dengan kecepatan 5 x 105 m/s melalui medan magnet sebesar 0,8 T seperti gambar berikut.


Tentukan :
a) besar gaya magnetik saat positron berada dalam medan magnet
b) arah gaya magnetik yang bekerja pada positron

Pembahasan
a) F = (0,8)(1,6 x 10−19)(5 x 105)(1) = 6,4 x 10−14 Newton
b) Positron termasuk muatan positif, sehingga arah gaya magnetik diwakili oleh telapak tangan seperti ilustrasi gambar berikut adalah masuk bidang baca (menjauhi pembaca)




Soal No. 3
Seutas kawat lurus dialiri arus sebesar 15 A dengan arah ke kanan. 8 mm dari kawat bergerak sebuah muatan positif sebesar 0,4 C dengan arah sejajar kawat dengan kelajuan 5 x 103 m/s.



Tentukan besar gaya magnetik yang bekerja pada muatan dan arahnya!

Pembahasan
Lebih dahulu cari besar medan magnet yang dihasilkan oleh kawat lurus pada jarak 8 mm:

B = μoI/2πa

B = (4π x 10−7)(15)/(2π)(8 x 10−3)
B = (15/4) x 10−4 Tesla
F = BQV sin 90°
F = ((15/4) x 10−4 )(0,4)(5 x 103)(1) = 0,75 Newton
Arah gaya sesuai kaidah tangan kanan adalah ke atas (mendekati kawat).

Soal No. 4
Dua buah muatan masing-masing Q1 = 2Q dan Q2 = Q dengan massa masing-masing m1 = m dan m2 = 2 m bergerak dengan kelajuan yang sama memasuki suatu medan magnet homogen B. Tentukan perbandingan jari-jari lintasan yang dibentuk muatan Q dan 2Q!

Pembahasan
Gaya sentripetal dari gerak kedua muatan berasal dari gaya magnetik



Soal No. 5
Sebuah muatan Q bergerak dengan kelajuan 2 x 104 m/s memasuki suatu daerah yang mengandung medan magnet B dan medan listrik E. Jika muatan tersebut tidak terpengaruh baik oleh gaya magnet maupun gaya listrik tentukan nilai perbandingan kuat medan magnet dan kuat medan listrik di tempat tersebut!

Pembahasan
Muatan tidak terpengaruh gaya listrik maupun magnet berarti kedua gaya tersebut adalah sama besar dan berlawanan arah.

Fmagnet = Flistrik

BQV = QE
B/E = 1 / (2 x 104)
B/E = 0,5 x 10− 4 TC/N

Soal No. 6
Sebuah partikel alpha (m = 6,4×10–27 kg, q = 3,2×10–19 C) bergerak tegak lurus terhadap medan magnet B yang arahnya masuk bidang gambar. Jika B = 0,2 T dan kecepatan partikel 3×105 m/s, maka jari-jari lintasannya adalah...
A. 1,33 m
B. 0,75 m
C. 0,30 m
D. 0,13 m
E. 0,03 m
(Soal Ebtanas 1997)

Pembahasan
Partikel alpha bergerak melingkar dalam medan magnet B dengan jari-jari



Masukan datanya



Soal No. 7
Suatu muatan positif dari 0,2 C bergerak dengan kecepatan 2 m/s dalam medan magnetik yang besarnya 5 Wb/m2. Arah kecepatan muatan itu sejajar dengan arah medan magnetik. Gaya yang dialami muatan tersebut adalah...
A. nol
B. 0,08 N
C. 0,5 N
D. 2 N
E. 50 N
(Soal Skalu 1997)

Pembahasan
Arah kecepatan muatan itu sejajar dengan arah medan magnetik sudutnya adalah θ = 0, sehingga sin θ = 0 dan F = BQv sin θ juga nol

Soal No. 8
Partikel bermuatan q bergerak dengan kelajuan tetap memasuki medan magnetik dan medan listrik secara tegak lurus (medan listrik tegak lurus medan magnetik). Apabila besar induksi magnetik 0,2 T dan kuat medan listrik 6 x 104 V/m, maka kelajuan gerak partikel adalah....
A. 2 x 105
B. 3 x 105
C. 1,2 x 106
D. 2 x 106
E. 3,2 x 106
(Soal UMPTN 1997)

Pembahasan
Partikel bermuatan bergerak dalam medan magnet dan medan listrik hingga mendapatkan gaya magnet sekaligus gaya listrik.



Sehingga



Gaya magnetik pada kawat

Soal No. 1
Tentukan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6600 Å jika kecepatan cahaya adalah 3 x 108 m/s dan tetapan Planck adalah 6,6 x 10−34 Js !

Pembahasan
E = h(c/λ)
E = (6,6 x 10−34 )( 3 x 108/6600 x 10−10 ) = 3 x 10−19 joule

Soal No. 2
Panjang gelombang cahaya yang dipancarkan oleh lampu monokromatis 100 watt adalah 5,5.10−7 m. Cacah foton (partikel cahaya) per sekon yang dipancarkan sekitar....
A. 2,8 x 1022 /s
B. 2,0 x 1022 /s
C. 2,6 x 1020 /s
D. 2,8 x 1020 /s
E. 2,0 x 1020 /s
(Sumber soal : UM UGM 2004)

Pembahasan
Data :
P = 100 watt → Energi yang dipancarkan tiap sekon adalah 100 joule.

Energi 1 foton
E = h(c/λ)
E = (6,6 x 10−34 )( 3 x 108/5,5 x 10−7 ) joule

Jumlah foton (n)
n = 100 joule : [ (6,6 x 10−34 )( 3 x 108/5,5 x 10−7 ) joule] = 2,8 x 1020 foton.

Soal No. 3
Intensitas radiasi yang diterima pada dinding dari tungku pemanas ruangan adalah 66,3 W.m−2. Jika tungku ruangan dianggap benda hitam dan radiasi gelombang elektromagnetik pada panjang gelombang 600 nm, maka jumlah foton yang mengenai dinding persatuan luas persatuan waktu adalah ....(h = 6,63 x 10− 34 J.s, c = 3 x 108 m.s− 1)
A. 1 x 1019 foton
B. 2 x 1019 foton
C. 2 x 1020 foton
D. 5 x 1020 foton
E. 5 x 1021 foton
(Sumber soal : UN Fisika SMA 2010)

Pembahasan
Data :
I = 66,3 W.m−2 → Energi yang diterima tiap sekon tiap meter persegi adalah 66,3 joule.

Energi 1 foton
E = h(c/λ)
E = (6,63 x 10−34 )( 3 x 108/600 x 10−9 ) joule

Jumlah foton tiap sekon tiap satuan luas adalah:
n = 66,3 joule : [ (6,63 x 10−34 )( 3 x 108/600 x 10−9 ) joule] = 2 x 1020 foton

Soal No. 4
Tentukan perbandingan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6000 Å dan sinar dengan panjang gelombang 4000 Å !

Pembahasan
Data :
λ1 = 6000 Å
λ2 = 4000 Å

E = h(c/λ)
E1/E2 = λ2 : λ1 = 4000 : 6000 = 2 : 3

Soal No. 5
Energi foton sinar gamma adalah 108 eV. Jika h = 6,6 x 10−34 Js dan c = 3 x 108 m/s, tentukan panjang gelombang sinar gamma tersebut dalam satuan angstrom!

Pembahasan
Data :
E = 108 eV = 108 x (1,6 x 10−19) joule = 1,6 x 10−11 joule
h = 6,6 x 10−34 Js
c = 3 x 108 m/s
λ = ...?

λ = hc / E
λ = ( 6,6 x 10−34)(3 x 108) / (1,6 x 10−11)
λ = 12,375 x 10−15 meter =12,375 x 10−15 x 1010 Å = 12,375 x 10−5 Å

Soal No. 6
Bola lampu mempunyai spesifikasi 132 W/220 V, ketika dinyalakan pada sumber tegangan 110 V memancarkan cahaya dengan panjang gelombang 628 nm. Bila lampu meradiasikan secara seragam ke segala arah, maka jumlah foton yang tiba persatuan waktu persatuan luas di tempat yang berjarak 2,5 m dari lampu adalah ... (h =6,6.10−34 J s)
(A) 5,33 . 1018 foton.s m−2
(B) 4,33 . 1018 foton.s m−2
(C) 3,33 . 1018 foton.s m−2
(D) 2,33 . 1018 foton.s m−2
(E) 1,33 . 1018 foton.s m−2
(Sumber soal : SIMAK - UI 2009)

Pembahasan
Daya Lampu yang memiliki spesifikasi 132 W/220 V saat dipasang pada tegangan 110 V dayanya akan turun menjadi :
P2 =(V2/V1)2 x P1
P2 =(110/220)2 x 132 watt = 33 watt

Intensitas (daya persatuan luas) pada jarak 2,5 meter :
I = (P/A) dengan A adalah luas permukaan, anggap berbentuk bola (luas bola empat kali luas lingkaran).
I = (P/4π r2)
I = (33/4π (2,5)2) = 0,42 watt/m2
0,42 watt/m2 → Energi tiap sekon persatuan luas adalah 0,42 joule.

Jumlah foton (n) :
n = 0,42 : (hc/λ) = [ 0,42 ] : [ ( 6,6 x 10−34 )( 3 x 108 )/( 628 x 10−9 ) ] = ( 0,42 ) : (3,15 x 10−19 )
n = 1,33 x 1018 foton

1 komentar:

  1. A new $2.6 billion resort from the COVID-19 pandemic
    The new Encore Las Vegas has been designed to create 경주 출장마사지 a more luxurious experience. 군산 출장샵 The hotel, hotel and casino are 안양 출장샵 located on 문경 출장안마 the site of 아산 출장마사지 the Las

    BalasHapus